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Introduction

For our final project we designed and implemented a face recognition software. This is an

especially interesting project because facial recognition has become an incredibly relevant tool in

modern technology. Today, nearly all smartphones on the market use some form of face

identification technology. It has become a popular method for unlocking devices, opening

sensitive apps, or even enabling payment methods. Face recognition has also, for better or for

worse, become an integral tool in law enforcement. These agencies have access to local, state

and federal databases in which they can query an image of a potential person-of-interest in hopes

of identifying them (Face Recognition, 2020). As helpful as this may be, it relies heavily on the

accuracy of the recognition system and the quality of the database: both of which may have

internal biases based on race and skin color. This ethically questionable reliance on technology

presents a challenging problem given the possibility of false positive results which could

ultimately lead to a waste of resources, or worse, the misidentification or even prosecution of

innocent people. As a result, we are putting an emphasis on designing our system to be as

accurate and unbiased as possible and to gain some insight into the reasons for such biases.

For the sake of comparison, we decided to design and implement two different loss

methods for our neural network. The cross-entropy and triplet loss methods were both

implemented and compared for accuracy and flexibility. The triplet loss method was chosen for

the project because of its flexibility in adjusting to larger datasets and popularity in industry.
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In terms of the software architecture, the data flow can be described as follows. First, an

image is chosen for analysis with a visible face, or faces. The software then detects every visible

face in the image. Each face is transformed to a fixed size and dimension so that every face is

identical in size. If the face is rotated in the image, it is transformed such that the detected eyes

lie parallel and are vertically centered in the frame. This step is important to maintain continuity

when measuring and comparing faces. Next, the transformed face is cropped and passed through

the convolutional neural network. For the cross-entropy model, the network will output an array

of probabilities that the input image is most similar to each class. In the case of the triplet loss

model, each class will be assigned 128-d vector encoding. These vectors are based on

measurements taken between key facial features. Finally, each face is classified based on the

previously assigned vectors. If the feature vectors of the face are within a certain threshold of

similarity to one of the faces in our dataset, the classifier matches the names and will output the

person’s name accompanied by the percentage confidence of that determination.

Background

Face recognition is a popular and intriguing problem in the world of computer vision

which means there are plenty of helpful resources available on the internet. People have tried an

array of different methods with varying results. The basic pipeline that most face recognition

projects follow is: detecting faces, transforming them, identifying key features, and comparing

the features to encodings in a database (Geitgey, 2020). Studies suggest that the most important

steps in this process is the face alignment, landmark localization, face frontalization, and facial

landmark detection (Le, 2017). These features will be important to focus on to improve the

accuracy of our facial recognition project and will assist in the identification of faces in varying

situations. Landmark localization will be especially important when building the system because
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it assists in consistent identification of faces (Geitgey, 2020). A common method for landmark

localization uses ensemble regression trees and was invented by Vahid Kazemi and Josephine

Sullivan (Kazemi, 2014). This method uses 68 landmarks on the face to transform the picture so

the facial features are in the same place each time. This method has proved to be reliable in

transforming faces. Another good reference for our project is from a project called OpenFace

which uses a neural network that produces 128 measurements from the face to identify it (Amos,

2016). This project shows a low false-positive rate and has large amounts of information on

Github to reference for our project.

In addition to preprocessing, the loss function used is also important to consider.

Cross-entropy loss function takes an output list of percentages that all add up to one. The

cross-entropy model measures the distances from the truth values and assigns each class to a true

or false value. This is less effective with large databases because it is harder to add classes

(Koech, 2020). Another loss function that is commonly used is triplet loss. The triplet loss

method uses an anchor image, a negative image, and a positive image. This method pushes the

encodings of the negative images away from the values of anchor encoding and tends to

“cluster” the encodings of the positive images. After doing this hundreds of thousands of times

the model should be able to encode any image with an accurate embedding for that person. This

loss model is especially reliant on performing a large amount of epochs. Moreover, this method

is far more effective on larger datasets because it is flexible with the number of cases (Salgado,

2019).

Data and Methods

Like many computer vision applications, face recognition presents a problem that can be

tackled with a wide range of varying approaches. Existing strategies range in complexity and
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difficulty. The LFW, or “Labeled faces in the Wild” database, provides thousands of images of

people with labeled faces (Face Recognition, 2020). This database was used for the testing and

training of our neural network. Two different loss models were tested for this project in order to

compare performance and achieve the highest possible accuracy. Each model was accompanied

by a different neural network. For the cross-entropy loss model, the neural network was a 7-layer

convolutional neural network. The triplet loss method was also implemented and this was

accompanied by a 5-layer convolutional neural network.

Our first approach implemented a sparse categorical cross-entropy loss function with a

softmax activation. This model returns a multinomial probability distribution applying to all

classes in the provided dataset (Brownlee, 2020). This method had plenty of documentation and

was quite simple to implement and test and is typically quite accurate for datasets with a

manageable number of classes. After countless design iterations we achieved the best testing

accuracy at 85.76%. Our final model consisted of seven convolutional layers with four

applications of max pooling and periodic batch normalization and dropout functions to reduce

overfitting. The issue that was found with the softmax method is the lack of flexibility and the

significant decrease in accuracy when dealing with larger datasets. The second loss function

method tested is the triplet loss method.

The second approach employed a semi-hard triplet loss function to learn good

embeddings for the images. This method was considerably more difficult to implement. Despite

tensorflow having a triplet loss function included in its framework, the amount of helpful

documentation was limited. The triplet loss method allows for variable numbers of classes. This

allowed for more faces to be enrolled in the database while still maintaining high accuracy.

Triplet loss uses an anchor photo for each class which is compared to other photos. A positive
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match is added to the same class as the anchor photo and a negative is placed in a different class

(Moindrot, 2018). This process is all done automatically via online triplet mining performed by

the adapted TensorFlow functions.

Evaluation

The evaluation of our project is concerned with the accuracy of our recognition software

and the performance difference between the CNN models. We tested the system by splitting a

large open-source database of labeled faces into training, testing, and validation datasets with an

equal distribution of classes in each. To properly prepare the LFW database for evaluation, we

eliminated all classes (or people) from the dataset that had less than 15 face images associated

with them. This left us with approximately 3000 images and 62 classes to train and test with.

This made it simple to find the accuracy of the implemented systems. For the cross-entropy

model the testing was relatively easy. Since each face in the testing database is labeled, we were

able to pass many images through and compare the result with the actual result until a concrete

number for accuracy was reached.

Evaluation for the triplet-loss function required a few more steps. First, the model was

trained using the semi-hard triplet loss function adapted from TensorFlow. Next, we transformed

the encodings of each trained image into a 2-d array and plotted them to track the development

of the cluster formations. The encodings were then averaged for each class and added to a

dictionary to act as the anchor embedding for each particular class. A k-nearest-neighbor

classifier was used to predict images from the testing dataset. The accuracy was then determined

by manually dividing the number of correct results by the length of the test set.
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Results

As discussed earlier, our first approach employed the use of a categorical cross-entropy

loss function. This model is very straightforward as the number of outputs directly correlates to

the number of classes in the input dataset. Our final design iteration for this model achieved a

high accuracy of 85.76%. The design process for this particular model consisted of altering the

shape of the neural network, the number of epochs, and the learning rate. In terms of the shape of

the neural network we tried all kinds of combinations for the number and size of convolutional

layers and played around with batch normalization and dropout to deal with overfitting. The

neural network was trained after each design iteration and changes were made based on the trend

of the validation and training loss and accuracy. Our final design iteration consisted of 7

convolutional layers with 4 max pooling layers interspersed between to reduce dimensionality.

Every pooling layer was followed by batch normalization and dropout to mitigate overfitting of

the results. These layers were followed by two dense layers and a final layer with a softmax

activation.

Our second approach, as discussed earlier, utilized triplet loss. In this model, triplet loss

is used to learn similar embeddings (also known as ‘encodings’) for faces of the same people. As

discussed earlier, the evaluation of this model was slightly different than that of the cross-entropy

model. Instead of focusing on the trends of validation accuracy and loss, we mainly determined

the success of the triplet loss model based on the visual representation of the embeddings. Figure

1 illustrates the distribution of embeddings created for images in a section of the LFW dataset.

The plot on the below represents the distribution before applying semi-hard triplet loss

and the plot on the right is after. Each color represents a different person or class. Before

training, the image encodings appear random with no observable pattern. Contrarily, after
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applying 500 epochs of semi-hard triplet loss, the embeddings for each image have been clearly

grouped together by class. Admittedly, there are still significant overlaps between classes which

can be attributed to our less than perfect design. We did our best to mitigate this effect by using a

K-neighbors classifier for the predictor but some of these are hard to avoid. That being said,

these results were very exciting to see as our first few iterations were not nearly as accurate. To

reach the final design iteration we followed a similar process to the cross-entropy model by

altering and testing different components of the network.

Fig 1: Final design iteration results - dataset distribution before and after triplet-loss training

Outlook

The goal set for this project was originally to achieve a detection accuracy over 95%

using the LFW database. Unfortunately, this was not achieved by either loss evaluation method,

but after broadening our understanding of the topic, this makes sense. Achieving high accuracies

for a large dataset like LFW takes a lot of time and patience. This project made us realize the
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complex difficulties behind face recognition algorithms and furthered our understanding of how

it could be problematic in law enforcement.

Throughout the duration of the project, we ran into a number of obstacles that in

hindsight probably could have been avoided. For instance, the implementation process for the

triplet loss function turned out to be much more difficult than expected. The loss function is not

only difficult to grasp, but the function included in TensorFlows framework was lacking in

proper documentation, especially for our design model. We ended up having to adapt a few of

the TensorFlow functions to fit our design. Another challenge was figuring out how to access the

webcam from google colab. We were eventually able to solve this by piecing together some code

from other sources to achieve acceptable results. Finally, we believe that our accuracy was

impacted by the data imbalance in the LFW database is the imbalance in class size but were not

able to address this in time.

All in all, we were able to successfully design, evaluate and compare two different loss

functions for face recognition, both achieving decent accuracy rates on the LFW dataset. In

addition to that we were able to create rudimentary custom datasets by capturing, detecting, and

transforming faces in images captured from a webcam. Despite having a few issues here and

there, we ultimately learned alot about face detection algorithms, the role of loss functions and

overall gained a better understanding of neural networks. Given more time, the opportunities for

improvement are endless. First, the accuracy of both models could be improved drastically with

more testing and research. Additionally, in terms of custom datasets, we could implement live

face recognition from a real-time webcam video. Finally, we could make the code much more

user friendly by making it more robust and allowing users to automatically make custom datasets

by collecting a set of images from the webcam without needing to understand the code.
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