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A. Overview of the Asset & Market

SPDR S&P 500 Trust ETF tracks the Standard and Poor’s 500 Index. This index is made
up of 500 large-cap US stocks and serves as a benchmark for the US equity market. The SPDR
S&P 500 Trust ETF is traded on the NYSE Arca exchange under the symbol SPY. The SPY ETF
was the first index ETF, fully replicating and setting its target price at 10% of the S&P 500. This
ETF allows investors to own a small fraction of the entire S&P 500 under one asset for a
relatively low cost. Since its creation in 1993, SPY ETF has grown from $6.53 million in assets
to almost $417 billion in assets making it the largest ETF in the World. Over one-quarter of the
SPY ETF is invested in the information technology sector with top companies such as Apple,
Microsoft, and Amazon. It is managed by professionals that use large blends of growth and value
stocks to ensure that it accurately follows the index. Below is the breakdown of SPY ETF.

Information Technology 28.02%
Healthcare 13.61%
Consumer Discretionary 12.02%
Financials 11.11%
Communication Services 9.36%

B. One Application for the Econometric Analysis

The S&P 500 represents a diverse pool of the top 500 publicly traded companies in the
United States. Its portfolio pulls from some of the most important economic sectors nationwide,
including information technology, healthcare, and consumer discretionary. In turn, the current
valuation and trajectory of the S&P 500 is relatively indicative of the overall state of the stock
market. More importantly, it reflects investor confidence which often correlates with the health
of the overall economy. As a consequence, its performance is scrutinized by everyone from
investors and speculators to economists, researchers, and government agencies.



Since the SPY ETF represents the S&P 500 index, an econometric analysis of its
characteristics would be extremely beneficial for investors and hedge fund managers in detecting
and predicting patterns in stock market volatility. Economists could use this information to
forecast future GDP growth or potential economic depressions. Government agencies could
analyze the effects of various fiscal and monetary policies on the associated movements in the
SPY ETF. Managers could even use such econometric analyses of the SPY ETF to better
understand when a good time to expand or downsize would be. Overall, having a relative
comprehension of what the economic future holds can help anyone interpret how certain events
will either directly or indirectly affect them.

C. Properties of the Time-Series
I.  Descriptive statistics

Figure 1.14: Sample Statistics for the SPY and S&P 500 Prices

Daily Monthly
SPY S&P 500 SPY S&P 500
Min 25.24 431.90 25.72 440.20
Ist Quartile 71.25 1022.60 71.57 1020.60
Median 93.96 1293.20 94.33 1292.30
Mean 131.43 1573.80 132.34 1584.00
3rd Quartile 174.68 1995.20 174.61 2003.4
Max 476.23 4796.60 471.83 4766.20
Skewness 1.55 1.41 1.53 1.40
Kurtosis 1.89 1.71 1.80 1.62
Figure 1.1B: Sample Statistics for SPY and S&P 500 Log Prices
Daily Monthly
SPY S&P 500 SPY S&P 500
Variance 0.489 0.309 0.493 0.311
Standard Dev 0.699 0.556 0.702 0.558




The mean for SPY monthly prices is $131.43 and the standard deviation of the SPY
monthly log prices is 0.699. The corresponding monthly values for the S&P 500 are $1,584.00
and 0.702. As mentioned in the previous report, the beauty of the SPY is that it mimics the
returns of the S&P 500 at a discounted investment price. The sample skewness for SPY prices,
1.53, is extremely positive indicating a highly skewed distribution. Similarly the skewness for
S&P 500 is extremely positive at 1.40. The sample excess kurtosis values for SPY and S&P 500
are 1.80 and 1.62, respectively, indicating that the tails of the histograms are fatter than the tails
of a normal distribution. See Figure 2.2 for a visual of the monthly prices of both time series
from 1993 to 2022.

The mean and standard deviation for SPY and S&P 500 daily prices are relatively
equivalent to the monthly statistics. Both time series have daily price patterns consistent with
their monthly counterpart. Similarly, the excess kurtosis values are relatively equivalent implying
that the tails of the daily distribution are also fatter than a normal distribution. See Figure 2.1 for
a visual of the daily prices of both time series from 1993 to 2022.

Figure 1.2A: Sample Statistics for the SPY and S&P 500 Simple Returns

Daily Monthly
SPY S&P 500 SPY S&P 500
Min -0.1094 -0.1198 -0.1604 -0.1694
1st Quartile -0.0043 -0.0045 -0.0152 -0.0171
Median 0.0007 0.0006 0.0139 0.0121
Mean 0.0004 0.0004 0.0088 0.0073
3rd Quartile 0.0059 0.0057 0.0368 0.0342
Max 0.1452 0.1158 0.1336 0.1268
Skewness -0.064 -0.201 -0.552 -0.628
Kurtosis 11.75 10.73 1.10 1.22
Figure 1.2B: Sample Statistics for SPY and S&P 500 Simple Log Returns
Daily Monthly
SPY S&P 500 SPY S&P 500
Variance 0.0001 0.0001 0.001 0.002
Standard Dev 0.012 0.012 0.043 0.043




The mean for SPY monthly returns is 0.009 and the standard deviation for SPY log
returns is 0.043. Annualized, these values are approximately 0.101 (.009x12) and 0.149 (.043 x
V12), respectively. The corresponding monthly and annualized values for S&P 500 are 0.007 and
0.043 and 0.084 and 0.149, respectively. Although closely related, SPY has a slightly higher
mean and volatility than the S&P 500. The sample skewness for SPY, -0.55, is slightly negative
meaning it has moderate asymmetry. Similarly the skewness for S&P 500 is moderately negative
at -0.63. Both statistics are reflected in the longer left tails seen in Figure 2.6. The sample excess
kurtosis values for SPY and S&P 500 are 1.10 and 1.22, respectively, indicating that the tails of
the histograms are slightly fatter than the tails of a normal distribution. See Figure 2.4 for a
visual of the monthly returns of both time series from 1993 to 2022 and see Figure 2.5 for a
visualization of what a $1 investment would look like in each during the same period.

The mean and standard deviation for SPY and S&P 500 daily returns are approximately
zero. Both time series have minimal negative skewness, meaning they are relatively symmetric
on a day-to-day basis. However, the excess kurtosis values are significantly larger implying that
the tails of the distribution are much fatter than a normal distribution. See Figure 2.3 for a visual
of the daily returns of both time series from 1993 to 2022.

Figure 1.3: Sample Statistics for SPY Trade Volume

Daily Monthly
Min 5,200 1,808,000
Ist Quartile 8,599,325 181,296,400
Median 60,230,900 1,344,541,500
Mean 84,584,795 1,770,970,158
3rd Quartile 119,411,350 2,536,184,400
Max 871,026,300 11,882,352,200
Standard Dev 94,631,262 1,846,391,431
Skewness 2.13 1.72
Kurtosis 7.00 4.08

The mean and standard deviation for SPY monthly trade volume are 1.77 billion and 1.85
billion, respectively. Annualized, these values are approximately 21.2 billion and 6.41 billion,
respectively. The sample skewness for SPY, 1.72, is very positive meaning its distribution has
significant skew. The sample excess kurtosis value for SPY is 4.08 indicating that the tails of the
SPY distribution are significantly fat. See Figure 2.7 for a visual of the monthly trade volume of
SPY.



The mean and standard deviation for SPY daily trade volume are 84 million and 94
million. Again, we see that the SPY has a highly positively skewed distribution. The excess
kurtosis SPY value is even larger on a daily basis implying that the tails of its distribution are
much fatter than a normal distribution. See Figure 2.8 for a visual of the daily trade volume of
SPY from 1993 to 2022.

II. Visualization

Figure 2.1: Daily Prices from 1993 - 2022 of SPY vs SP500
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Figure 2.2: Monthly Prices from 1993 - 2022 of SPY vs SP500
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Figure 2.3: Daily Returns from 1993 - 2022 of SPY vs SP500
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Figure 2.4: Monthly Returns from 1993 - 2022 of SPY vs SP500
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Figure 2.5: Equity curves for SPY and S&P 500 monthly returns
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Figure 2.6: Histograms for Daily and Monthly Returns on SPY and SP500 index
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Figure 2.7: Monthly Trade Volume from 1993 - 2022 of SPY
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Figure 2.8: Daily Trade Volume from 1993 - 2022 of SPY
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III.  Unit-root and seasonality tests

Figure 3.1: Augmented Dickey-Fuller Test

Augmented Dickey-Fuller Test

data: sp
Dickey-Fuller = 0.34745, Lag order = 19, p-value = 0.99
alternative hypothesis: stationary

When running a Dickey-Fuller Test on the SPY data, the output displayed an extremely
high p-value of 0.99. Because the p-value was so high, the null hypothesis could not be rejected.
Unit root was present, meaning that the process was non-stationary and overtime the variance
moved towards infinite. This makes sense because for an ETF to be an appealing investment, its
price and returns must grow overtime. Ifthe SPY was stationary, no one would invest in it and it
would become obsolete.

Figure 3.2: Autocorrelation Function of SPY
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Further proof of the nonstationarity of the process can be seen through the autocorrelation
function. There is no decay through the lags. The autocorrelation of today’s value and any
previous lag is near 1. The process does not forget any of the previous values. Again, this is
reasonable because historically SPY has had a positive growth and has never fluctuated around
any single mean value.



Figure 3.4: Decomposition Function Output
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The output of the decomposition function can be shown in figure 3.4 above. This
function breaks down the data by level, first identifying the trend then removing it. Once
removed the seasonality can easily be seen. There appears to be seasonality present throughout
the day.

D. ARIMA Models of Price and Return

The first step when building an ARIMA model is to ensure the time series is stationary.
To make this series stationary a differencing function will be applied. In an ARIMA model, this
is done through choosing the optimal value for ‘d’, or the number of differencing needed to make
the series stationary. Typically, the first order of differencing is enough to achieve stationarity. In
this section, two ARIMA models will be built: one to model the price of the SPY ETF, and
another to model the returns. For the price model, the first order difference is enough to reject the
null hypothesis of the augmented dickey-fuller test, indicating stationarity as seen in Figure 4.1.
For returns there is no need to apply differencing to the series as it is already stationary.

Figure 4.1: Augmented Dickey-Fuller Test on the First Differenced SPY Price
Augmented Dickey-Fuller Test
data: diff(spy$adjusted)

Dickey-Fuller = -20.234, Lag order = 19, p-value = 0.01
alternative hypothesis: stationary
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Next, the optimal orders of the Auto Regressive term (p) and Moving Average term (q)
must be selected. These refer to the number of lags to be used as predictors and the number of
lagged forecast errors that should go into the ARIMA model, respectively. These values can be
roughly determined from the PACF and ACF plots. Based on the PACF plots found below, the
optimal AR term is likely somewhere between 1 and 8 for price, and around 1 for returns.

Similarly, based on the ACF plots, the best value for the MA term is most likely a 0 or 1 for both

price and returns. Next, to find the optimal ARIMA model a variety of p, q, and differencing

terms will be tested for both price and returns. A total of four models were fitted to the SPY data.
The terms for the models were determined by examining the PACF and ACF plots as discussed
above as well as using the built in auto arima function. The best model will be chosen based on

trained error metrics and AIC, while also favoring simple models.

Figure 4.2: PACF of First Differenced SPY Price
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Figure 4.3: ACF of First Differenced SPY Price
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Figure 4.4: PACF of SPY (Log) Returns
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Figure 4.5: ACF of SPY (Log) Returns
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Figure 4.6: Selected ARIMA Model of SPY Price

call:

arima(x = spy_adj, order = c(5, 1, 0))

Coefficients:

arl ar2 ar3 ard ars

-0.1066 0.0430
s.e. 0.0117 0.0117

-0.0130
0.0118

-0.0304 0.0157
0.0117 0.0117
sigmar? estimated as 3.417: Tlog likelihood = -15018.29, aic = 30048.57
Training set error measures:

ME RMSE MAE MPE MAPE MASE ACF1
Training set 0.05747507 1.848431 1.00799 0.03359726 0.7879716 1.001069 0.0003889461

Figure 4.7: ARIMA Model Comparison for SPY Price

Model AIC Training RMSE Training MAE
ARIMA(5,2,0) 31344 2.018 1.103
% ARIMA(5,1,0) 30049 1.848 1.008
ARIMA(1,1,1) 30055 1.849 1.007
ARIMA(12,1,1) 29801 1.816 1.014

13




Figure 4.8: Selected ARIMA Model of SPY Returns

Ccall:
arima(x = rin, order = c(1, 0, 1))
Coefficients:
arl mal 1intercept
0.3991 -0.4832 de-04
s.e. 0.1759 0.1685 le-04

sigmah?2 estimated as 0.0001394: Tlog likelihood = 22305.63, aic = -44603.25

Training set error measures:
ME RMSE MAE MPE MAPE MASE ACF1
Training set 8.215857e-06 0.01180861 0.007823891 NaN Inf 0.6742567 -0.005244438

Figure 4.9: ARIMA Model Comparison for SPY Returns*

Model AIC Training RMSE Training MAE
* ARIMA(1,0,1) -44603 11.809e-3 7.8239¢-3
ARIMA(1,0,0) -44598 11.814e-3 7.8231e-3
ARIMA(1,0,4) -44606 11.802e-3 7.8208e-3
ARIMA(2,0,2) -44604 11.805¢-3 7.8210e-3

*Additional significant figures added for comparison purposes

After running a variety of ARIMA models, the best performer was determined by
comparing training set errors and AIC. The top performing models for both price and returns are
shown in figures 4.6 and 4.8 respectively. A summarized comparison of each ARIMA model
tested for price and returns is provided in Figure 4.7 and 4.9 respectively. The best models were
determined based on AIC value, training set error, and simplicity. The detailed output for the
selected forecasting model for price is shown in Figure 4.6. It performed better than most of the
other models in terms of AIC while also achieving lower training errors. Moreover, it provides a
simpler solution than the ARIMA(12,1,0) model which is important when considering
overfitting. As a result, this model was chosen as the optimal solution which is corroborated by
our out-of-sample testing comparison found in Figure 4.7.

The best ARIMA model found for forecasting returns is pictured in Figure 4.8. This
model, which was suggested by the auto arima function, had the second best AIC score in
addition to lower or equal training errors. Moreover, it performs better than the other models in
the out-of-sample testing found in Figure 4.9 which is why it was selected as the optimal
solution. Next, we will plot the residuals and perform an Ljung-Box test on the models to check
each of the models validity. As seen below, both of the models’ standardized residuals appear
stationary which is corroborated by the Autoregressive plots. Moreover, there appears to be no
sign of serial correlation in the residuals of the ARIMA model chosen.
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Figure 4.10: Checking ARIMA Model of Price
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Figure 4.11: Checking ARIMA Model of (Log) Returns
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i. Forecasting power of the ARIMA model s

Figure 4.12: Fitted ARIMA Model Plotted Against Actual SPY Price
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Figure 4.13: Closer look at Fitted ARIMA Model From 2021-2022
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Figure 4.14: Fitted ARIMA Model Plotted Against Actual SPY Returns
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Figure 4.15: ARIMA Forecasted Price 100 Days in the Future
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Figure 4.16: ARIMA Forecasted Return 100 Days in the Future
Forecasts From ARIMA(12,0,0)
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Based on what can be gleaned from the plots above, the chosen ARIMA models appear to
be effective forecasters. Figures 4.12 through 4. 14 show the output of the fitted ARIMA models
closely following the trends of the actual historical values. After fitting the models to the
historical data, both were used to forecast the price and return up to 100 days in the future. The
dark blue and light blue shaded regions on the plots represent the 80% and 95% confidence
intervals, respectively. The price ARIMA model forecasts that the SPY ETF will gently increase
over the next couple months as seen in Figure 4.16. The return ARIMA model, on the other
hand, forecasts that the returns will fluctuate slightly around the mean (zero) before returning to
zero as expected.

To further compare the performance of the models tested, an out-of-sample fit was
applied in the form of back testing. The data was divided into a training and testing sample, each
consisting of 7,237 and 150 data points respectively. The following results use a rolling of
estimation-prediction to compute 1-step ahead forecasts for the given models, starting with
forecasts in January, 2022. The results for each model are compared using the root mean squared
error (RMSE), and mean absolute error (MAE) obtained through back testing each model. The
selected models are marked with a star. It is observed that the models chosen for both the price
and returns perform better in terms of both RMSE and MAE than the other models tested.
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Figure 4.17: Backtesting Results for All Price Models Tested

Model RMSE MAE
ARIMA(5,2,0) 6.796 5.256
% ARIMA(5,1,0) 5.615 4471
ARIMA(1,1,1) 6.193 4.9438
ARIMA(12,1,1) 6.168 4.877

Figure 4.18: Backtesting Results for All Return Models Tested

Model RMSE MAE

* ARIMA(1,0,1) 1.4338e-2 1.1386¢-2
ARIMA(1,0,0) 1.4355¢-2 1.1349¢-2
ARIMA(1,0,4) 1.4372e-2 1.1382e-2
ARIMA(2,0,2) 1.4339¢-2 1.1397e-2

E. Multivariate Analysis Between Spot and Futures Prices

For our multivariate analysis, we will be comparing the SPY closing prices and E-Mini
S&P 500 Futures closing prices to determine if they are better suited for a VAR or VECM model.
For time series modeling, a vector autoregressive model (VAR) is used to describe short-term
dynamics. If the SPY and E-Mini show signs of long-term equilibrium relationships, however, a
vector error correction model should be used (VECM). In order to determine this relationship,
we must test for cointegration between the spot (SPY) and futures (E-Mini) prices using a
Johansen procedure. If the Johansen procedure shows evidence of cointegration, then causality
can be tested to examine the discovery role of futures prices.

Before we begin analysis, we should reconfirm that both the SPY and E-Mini closing
prices are non-stationary. A visual inspection of the charts below confirms this hypothesis.
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Figure 5.1: Adjusted Closing Prices & Corresponding ACF
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For statistical evidence, we can use a Box test for stationarity and an Augmented
Dickey-Fuller (ADF) test for the presence of a unit root. As seen below, the p-value for the
Box-Ljung test was significant for both the SPY and E-Mini, meaning we can reject the null
hypothesis of stationarity. The p-value for the ADF test was not significant for both, meaning we
fail to reject the null hypothesis and have strong evidence of non-stationarity.

Figure 5.2: Box & ADF Tests for Stationarity or Unit Root Presence

Box-Ljung test

data: spyPrices

X-squared = 3987.5, df = 25, p-value < 2.2e-16
Box-Ljung test

data: sp50@futuresPrices
X-squared = 3258.3, df = 25, p-value < 2.2e-16

Augmented Dickey-Fuller Test

data: spyPrices
Dickey-Fuller = -@.82873, Lag order = 6, p-value = @.9582
alternative hypothesis: stationary

Augmented Dickey-Fuller Test
data: sp5@@futuresPrices

Dickey-Fuller = -1.1418, Lag order = 6, p-value = ©.9138
alternative hypothesis: stationary

If we take a particular linear combination of these series it can sometimes lead to a
stationary series. Such a pair of series would then be termed cointegrated. Below are the log
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prices of the SPY and E-Mini S&P 500 Futures closing prices. Notice how individually the time
series are non-stationary, but the difference between them will likely end up being stationary.

Figure 5.3: Log Closing Prices
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The basis behind VAR models is that each of the time series in the system influences each
other. That is, we can predict the series with past values of itself along with other series in the
system. Using Granger's causality test it is possible to test this relationship between the SPY and
E-Mini before even building a model.

Figure 5.4: Granger Test for Causality

Granger causality test

Model 1: SP50@F ~ Lags(SP50@F, 1:3) + Lags(SPY, 1:3)
Model 2: SP50@F ~ Lags(SP50@F, 1:3)
Res.Df Df F Pr(>F)
1 211
2 214 -3 3.5025 9.01634 *

Signif. codes: @ “***’ 9,001 “**’ 9.1 **’ 0.065 *.” 0.1 ¢ ' 1
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The null hypothesis is that the coefficients of past values in the regression equation is
zero. In other words, the null hypothesis is that the past values of the SPY do not cause the
E-Mini S&P 500 Futures. Since the p-value obtained from the test is less than the significance
level of 0.05 (0.01634 < 0.05), then we can safely reject the null hypothesis. Therefore, the SPY
spot prices cause the E-Mini S&P 500 Futures prices.

The order of integration is the number of differencing required to make a non-stationary
time series stationary. In our case, this represents the number of differencing required to make
the SPY and E-Mini stationary respectively. If there exists a linear combination of them that has
an order of integration less than that of the individual series, then the collection of series is said
to be cointegrated. When two or more time series are cointegrated it means they have a long run,
statistically significant relationship and we should proceed with a VECM model. If not, we
proceed with a VAR model.

The first hypothesis of the Johansen procedure, r = 0, tests for the presence of
cointegration. It is clear in Figure 5.5 that the test statistic does not exceed any of the
significance levels (10.79 < 12.91 < 14.90 < 19.19), so we have strong evidence to not reject the
null hypothesis of no cointegration.

Figure 5.5: Johansen Test for Cointegration

B e e
# Johansen-Procedure #
it e S S S e i

Test type: maximal eigenvalue statistic (lambda max) , with linear trend

Eigenvalues (lambda):
[1] 9.048056337 0.001310432

Values of teststatistic and critical values of test:

test 1@pct 5Spct 1pct
r<=11 ©0.29 6.50 8&8.18 11.65
r=0 | 10.79 12.91 14.90 19.19

Eigenvectors, normalised to first column:
(These are the cointegration relations)

SPY.12 SPS@@F.12
SPY.12 1.000000 1.00000
SP5@0F.12 -1.231384 -2.31716

Weights W:
(This is the loading matrix)

SPY.12 SP500F .12

SPY.d ©.1713193 -0.0007395309
SPS00F.d ©.1676850 -0.0010375646
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Since r = 0, we can assume there is no statistically significant long run relationship
between the SPY and E-Mini prices and we will estimate VAR in differences to periods. To

compute various information criteria for our vector time series after a single differencing, we can

use the VARorder() function.

Figure 5.6: VAR Model Order

d-di FFMCxd)
VARorder(d)

selected order: aic
selected order: bic

selected order: hq =
Summary table:

(1.1
2,]
3.1
(4.]
(5.1
(6.1
7.]
(8.1
9.]
(10,]
(11,]
(12,]
(13.]
[14.]

F. Conditional Variance Analysis: Various types of GARCH models

OOV A WNE ST

w

10
11
12
13

-16.
-17.
-17.
-17.
-17.
-17.
-17.
-17.
-17.
-17.
-17.
-17.
-17.
-17.

AIC
9201 -16.
3385 -17.
6547 -17.
6512 -17.
6952 -17.
7179 -17.
0882 -17.
7226 -17.
7101 -17.
6913 -17.
6697 -17.
6752 -16.
6488 -16.
0427 -16.

7
2
z2

BIC
9201
2768
5313
4661
4484
4094
3180
2907
2165
1360
@527
9965
9084
8405

-16.
-17.
-17.
-17.
-17.
-17.
-17.
-17.
-17.
-17.
-17.
-17.
-17.
-17.

HQ
9201
3136
6049
5765
5956
5933
5387
5482
5108
4670
4206
4912
3493
3187

U=~ N W

M(p) p-value

0000
9zZ.
71.
.5527
15.
11.
.2939
13.

5447
0543

8746
5440

5451
5196
2884
7508
6835
7994
4254

@.0000
@.0000
0.0000
@.1615
0e32
0211
8624
2089
3402
5108
6004
1039
7726
2464

Seeeeeemee

Before establishing GARCH models, we should first analyze the volatility of annualized

SPY daily returns. We can see in Figure 6.1, there are months with very high volatility and
months with very low volatility, suggesting a stochastic model for conditional volatility.
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Figure 6.1: Annualized Daily Volatility of SPY Returns

SPY monthly volatility 2000-09-19/ 2022-05-13
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Now we can proceed to test and compare GARCH models. We start with the standard
GARCH model where we consider the conditional error term to be a normal distribution and
compare its performance to that of an IGARCH, GARCH-M, EGARCH, and GJR-GARCH
model. The models were compared using the AIC and BIC metrics in the following table.

Figure 6.2: GARCH Model Comparison

Model AIC BIC

GARCH(1,1) -6.503 -6.499
IGARCH(1,1) -6.501 -6.497
GARCH(1,1)-M -6.562 -6.555
EGARCH(1,1) -6.543 -6.538
GJR-GARCH(1,1) -6.535 -6.530




Figure 6.3: Optimal Parameters of standard EGARCH Model

Optimal Parameters

Estimate
mu 0.00037
omega -0.26892
alphal -0.14032
betal 0.97067
gammal 0.16598

From the model comparison, the GARCH-M and EGARCH model performed the best

std. Error t wvalue Pr(|t])

0.000078 4.7567
0.003138 -85./7019
0.006319 -22.2063
0.000403 2410.0724
0.005929 27.9921

2e-06
Oe+00
Oe+00
Oe+00
Oe+00

according to the AIC and BIC comparison metrics. Between the two models, the EGARCH was
selected due to its ability to effectively model asymmetric volatility which is very relevant when

modeling trends in the stock market. Figure 6.3 shows the optimal estimated coefficients and

their corresponding significance. It is observed that every parameter is significant making this a
full EGARCH model. The leverage parameter (alphal) is significant and shows the effect of the

sign at a,, 1s negative. The gamma coefficient is also significant with an estimate of 0.17,

emphasizing the magnitude of asymmetric volatility in the data. The response to negative shock

would be -0.305 whereas the response to positive shock would be 0.025.

Figure 6.4: Ljung Box Test of Standard EGARCH Model

Weighted Ljung-Box Test on Standardized Residuals

Lag[1]

Lag[2* (p+q)+(p+q)-1][2]
Lag[4*(p+q)+(p+q)-1]1[5]

d.o.t=0

statistic p-value
5.827 0.01579
6.202 0.01943
9.491 0.01243

HO : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals

Lag[1]

Lag[2*(p+q)+(p+q)-1]1[5]
Lag[4* (p+q)+(p+q)-1]1[9]

d.o.f=2

Figure 6.4 reports the p-values for various lags of a weighted Ljung-Box test on both
standardized residuals and squared residuals. The null hypothesis in each test is that there is no

statistic p-value
1.915 0.16636
6.582 0.06541
8.193 0.11812

serial correlation between the error terms. Since the p-value is significant across all lags for the
standardized residuals, we can reject the null hypothesis and say there is strong evidence of serial
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correlation. The squared residuals, however, have insignificant p-values across all lags meaning
there is not enough evidence to reject the null hypothesis, indicating a lack of serial correlation.

Figure 6.5: Adjusted Pearson Goodness-of-Fit Test for EGARCH Model
Adjusted Pearson Goodness-of-Fit Test:

group statistic p-value(g-1)

1 20 199.3 4.728e-32
2 30 241.2 2.611e-35
3 40 261.5 9.853e-35
4 50 296.1 4.769e-37

Figure 6.5 reports test statistics concerning the goodness of fit of the error. It is used to
check if the error term follows the normal distribution. The null hypothesis is that the conditional
error term follows a normal distribution. As we can see, the normal distribution is vastly rejected
as all the p-values are essentially zero. Since the residuals do not fit the normal distribution we
can consider them to be more skewed and assume they follow a student distribution. We can
analyze this hypothesis simply by changing the model distribution to be “sstd”.

Figure 6.6: SSTD GARCH Model Analysis

Information Criteria Adjusted Pearson Goodness-of-Fit Test:

group statistic p-value(g-1)

Akaike -6.6011 1 20 43.50 0.0011072
Bayes -6.5946 2 30 63.74 0.0002071
Shibata -6.6011 3 40 66.53 0.0039018
Hannan-Quinn -6.5989 4 50 82.35 0.0020058

Figure 6.6 reveals that the SSTD distribution was a slightly better fit of the residuals
proven by lower information criteria. Unfortunately, the Pearson test still rejects the null
hypothesis that the error terms follow a SSTD. Since the residuals more closely follow a skewed
distribution with fat tails, we can test to see how a generalized hyperbolic distribution would fit.
We can analyze this hypothesis simply by changing the model distribution parameter to be
“ghyp”.
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Figure 6.7: SGED GARCH Model Analysis

Information Criteria

Akaike
Bayes
Shibata
Hannan-Quinn -6.6006

Returns

-6.6032
-6.5957
-6.6032

Adjusted Pearson Goodness-of-Fit Test:

group statistic p-value(g-1)

1 20 30.08 0.05077
2 30 46.14 0.02275
3 40 54.10 0.05456
4 50 72.73 0.01547

Figure 6.7 reveals that the GHYP distribution was a far better fit in terms of the Adjusted
Pearson Goodness-of-Fit Test. The p-value is higher than 0.05 for the group size of 20 meaning
that the GHYP is a good fit for the error term. Additionally, the information criteria has
improved vastly from the base model tested originally.

Figure 6.8: Two Conditional SDs of fitted EGARCH Model Compared with Returns

0.10

0.05

-0.05 0.00

-0.10
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Figure 6.9: QQ-Plot of Standardized Residuals from fitted EGARCH Model
ghyp - QQ Plot

Sample Quantiles
2

Theoretical Quantiles

Figure 6.9 illustrates the fit of the fitted volatility model by superimposing 2 standard
deviations on the returns of the SPY index. Figure 6.9 shows the QQ-plot of the standardized
residuals of the EGARCH model. As we discovered earlier, the distribution of returns is not
normal. However, after testing a couple other distributions we were able to achieve a better
fitting model using the GHYP distribution. From the QQ-plot, it’s clear that the GHYP

distribution provides a good fit for the data, effectively accounting for the fat tails and heavy left
skew. We can use this model specification to forecast the volatility of SPY daily returns over the

next 20 days.
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Figure 6.10: GARCH Model Predictions

0.00045
0.0155
I

oooooooooooooooooooo
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sigma(p1)
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0.00025
1
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1

Index Index

We can use this model specification to forecast the volatility of SPY daily returns over
the next 20 days. The figure above illustrates the volatility and mean predictions on the left and
right respectively. Figure 6.10 shows that the model predicts SPY daily return volatility to
remain stable over the next 20 days, with increasing uncertainty across the time period. It can
also be observed that the mean is slowly approaching the 0.0037, or the mean estimate of the
EGARCH model.

G. Value-at-Risk Analysis

This section will discuss the market risk of the SPY ETF through a value-at-risk analysis.
There are a couple different methods for characterizing the CDF of loss, but for the purpose of
simplicity and transparency the RiskMetrics approach was taken. The RiskMetrics method fits an
IGARCH(1,1) model to obtain an estimate of the beta parameter. The coefficient estimates
resulting from fitting the SPY ETF is 0.933 as shown below in figure 7.1. The estimate is very
close to the standard value of 0.94. The resulting IGARCH model is then used to predict the
value at risk (VaR) and expected shortfall (ES) risk metrics. The value of VaR helps determine
the extent and respective probabilities of potential losses of the SPY whereas the ES represents
the average predicted losses in the worst case scenarios. Both VaR and ES were calculated for
four threshold values: 95%, 99%, 99.9%, and 99.99%. The raw results are shown in table 7.1A
and the corresponding dollar amounts of VaR and ES given a $1000 position in the SPY are
provided in table 7.1B.

Figure 7.1: Fitted IGARCH Model Coefficients

Coefficient(s):
Estimate Std. Error t value Pr{>|t])
beta 0.93337887 0.00359081 259.935 < 2.22e-16 =*=
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Table 7.1A: Risk Measure Based on RiskMetrics

Probability VaR ES

0.950 0.03107 0.03897
0.990 0.04395 0.05035
0.999 (Risk Management) 0.05838 0.06361
0.9999 (Stress Testing) 0.07026 0.07479

Table 7.1B: VaR and ES at $1000 Position

Threshold VaR at a $1000 Position ES at a $1000 Position
0.950 $31.07 $38.97
0.990 $43.95 $50.35
0.999 (Risk Management) $58.38 $63.61
0.9999 (Stress Testing) $70.27 $74.79

Table 7.1C: 10-day VaR and ES at $1000

Position

Threshold VaR at a $1000 Position ES at a $1000 Position
0.950 $106.30 $133.48
0.990 $150.63 $172.68
0.999 (Risk Management) $200.33 $218.34
0.9999 (Stress Testing) $241.24 $256.82

From the results obtained through the value-at-risk analysis we can make a few educated
predictions about the extent and probability of potential losses. It can be assumed that with a
threshold of 95% the greatest expected loss is 3.11% of investment. However, when considering
the risk management threshold of 99.9%, the greatest expected loss is 5.84%. In other words,
there is a 99.9% chance that the SPY will not drop any more than 5.84% tomorrow. When
considering expected shortfall, it can be assumed that within the top 5% of worst case scenarios,
the average losses reach approximately 3.8%. The last two tables illustrate the dollar values of
VaR and ES given a $1000 position in the ETF. The first table directly corresponds with the
1-day ahead values, whereas the second table provides 10-day ahead estimates. The 10-day
ahead forecast indicates that with 95% confidence the maximum losses will only reach $106 over

30




10 days given an initial investment of $1000. Overall, the SPY fund is a safe investment option
with relatively low VaR measures.

H. Conclusion and Managerial Implications

The SPY ETF is one of the oldest and most recognizable US-listed ETFs and is typically
a frontrunner in terms of trading volume and assets under management (AUM). The fund tracks
the massively popular S&P 500 index, which is representative of a diverse pool of the top 500
publicly traded companies in the United States. Its portfolio pulls from some of the most
important economic sectors including information technology, healthcare, and consumer
discretionary. In turn, the current valuation and trajectory of the S&P 500, and subsequently the
SPY, is indicative of the overall state of the stock market. More importantly, it reflects investor
confidence which often correlates with the health of the overall economy. As a consequence, its
performance is heavily scrutinized. Since SPY is the most popular ETF that effectively tracks the
S&P 500 index, the econometric analyses akin to those covered in this report are extremely
beneficial to investors and hedge fund managers in detecting and predicting patterns in stock
market volatility.

This analysis began by examining the characteristics of both price and returns,
specifically stationarity and seasonality. The augmented dickey fuller test suggests that the future
and spot prices are non-stationary processes whereas the log returns are stationary. In terms of
seasonality, there is no rule-of-thumb test, but by looking at a decomposition plot by removing
trends and other noise the existence of seasonality was clear. There were clear monthly trends
with November-April seemingly performing the best whereas May-October had the worst
performance. Next, we applied numerous time-series forecasting techniques to model the
behavior of the model and to predict what will happen in the future. First, an ARIMA model was
fitted for spot price and returns, both of which achieved decent forecasting power. Next, a
multivariate analysis was performed comparing the adjusted closing prices of the SPY and the
E-Mini S&P 500 Futures to determine if a VAR or VECM model is better suited. From the first
hypothesis of the Johansen procedure, r=0, it is clear that there is no statistically significant
long-run relationship between the SPY and E-Mini thus VAR is the preferred model. Moreover,
the Granger causality test indicates that SPY prices cause E-Mini Future prices. The last time
series characteristic examined was volatility. To model the variance of SPY, various GARCH
models were assessed, the best of which was an EGARCH(1,1) model with a generalized
hyperbolic distribution.

Finally, a value-at-risk (VaR) analysis was performed, where both VaR and ES were
calculated for a variety of thresholds. The diverse nature of the SPY ETF makes it a great
investment for those looking for a low-risk option. The VaR analysis performed in section G
reflects this statement as the maximum expected loss in any given day is relatively low compared
to more volatile investments. As a whole, the SPY fund is a safe investment option for investors
of all ability levels. This report is meant to be readable and has information that is useful even to
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the novice investor. After all, having a relative comprehension of what the economic future holds
can help anyone interpret how certain events will either directly or indirectly affect them.

32



